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Abstract

Motivation: Molecule generation, which is to generate new molecules, is an important problem in bioinformatics.
Typical tasks include generating molecules with given properties, molecular property improvement (i.e. improving
specific properties of an input molecule), retrosynthesis (i.e. predicting the molecules that can be used to synthesize
a target molecule), etc. Recently, deep-learning-based methods received more attention for molecule generation.
The labeled data of bioinformatics is usually costly to obtain, but there are millions of unlabeled molecules. Inspired
by the success of sequence generation in natural language processing with unlabeled data, we would like to explore
an effective way of using unlabeled molecules for molecule generation.

Results: We propose a new method, back translation for molecule generation, which is a simple yet effective semi-
supervised method. Let X be the source domain, which is the collection of properties, the molecules to be optimized,
etc. Let Y be the target domain which is the collection of molecules. In particular, given a main task which is about to
learn a mapping from the source domain X to the target domain Y, we first train a reversed model g for the Y to X
mapping. After that, we use g to back translate the unlabeled data in ) to X and obtain more synthetic data. Finally,
we combine the synthetic data with the labeled data and train a model for the main task. We conduct experiments
on molecular property improvement and retrosynthesis, and we achieve state-of-the-art results on four molecule

generation tasks and one retrosynthesis benchmark, USPTO-50k.
Availability and implementation: Our code and data are available at https://github.com/fyabc/BT4MolGen.

Contact: yingce.xia@microsoft.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Molecule generation (Imrie et al., 2021), which aims to generate
new molecules based on the input, is an important problem in bio-
informatics. The input could be some random noise (De Cao and
Kipf, 2018), some properties (Xie et al., 2021), or the molecules to
be improved (Jin et al., 2020), etc. Various biomedical and chemis-
try tasks can be formulated as molecule generation. For example,
molecular property improvement is to improve specific properties of
a molecule, like the quantitative estimation of drug-likeness
(Bickerton et al., 2012) (briefly, QED), partition coefficient, etc.
The input is the molecule, and the output is another one which is
similar to the input with certain properties improved. Retrosynthesis
(Corey, 1991) is another example which aims to predict the reac-
tants (i.e. a collection of molecules) that can be used to synthesize a
target molecule.

Inspired by the success of deep learning in cognitive tasks such
as image classification (Krizhevsky ef al., 2012) and machine trans-
lation (Vaswani et al., 2017), researchers start using deep neural
networks for molecule generation. Olivecrona et al. (2017) and
Popova et al. (2018) leveraged deep reinforcement learning to de-
sign de novo drugs. Stokes et al. (2020) used deep learning for drug
repurposing. The more recent neural network architectures like

Transformer (Grechishnikova, 2021; Karpov et al., 2019a), graph
neural network (Dai ez al., 2019; Shi et al., 2020) and generative
adversarial networks (De Cao and Kipf, 2018) are also used in
molecule generation and obtain great improvements.

The labeled data of bioinformatics are usually cost to obtain. In
comparison, the unlabeled data are much easier to collect. For ex-
ample, the ZINC (Sterling and Irwin, 2015) database contains more
than 750 million compounds, and PubChem has 109 million com-
pounds. There are some work leveraging unlabeled data for mol-
ecule modeling and generation. One way is to use variational
autoencoder (VAE) to learn the representations of molecules, where
an input molecule x is first mapped to some high-dimensional repre-
sentation » and then reconstructed based on h. The distribution of »
is constraint to be close to some prior distribution. Kang and Cho
(2019) introduced VAE into molecule generation to leverage
unlabeled data, and predict molecular property together with
molecule generation. Gomez-Bombarelli et al. (2018) also use the
VAE framework, and the molecules can be optimized by applying
gradient ascent on the predictor. Born et al. (2021) jointly use
VAE and reinforcement learning, and their model can generate
cancer-type-specific candidate drugs that are similar to cancer
drugs in drug-likeness, synthesizability and solubility. Moreover,

©The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1244

Z20z 11udy gz uo Jasn euiy) Jo ABojouyos] pue 8ousIog 10 AlsIaAlun AQ Ly6YSH/rrZ L/S/8E /2 101E/SONBWIOLUIOIG/WOD dNoolWwapeoeR//:sdly Wol) papeojumoq


https://orcid.org/0000-0001-9823-9033
https://github.com/fyabc/BT4MolGen
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab817#supplementary-data
https://academic.oup.com/

Back translation for molecule generation

Kotsias et al. (2020) propose a new method that use conditional re-
current neural network (cRNN) to tackle the inverse design problem
directly, in which the cRNN may generate molecules near the speci-
fied conditions. Witnessing the fast development of pretraining tech-
niques in natural language processing (Devlin et al., 2019; Liu et al.,
2019) and computer vision (Chen et al., 2020), researchers also
apply pretraining techniques to molecule classification tasks
(Chithrananda et al., 2020; Li et al., 2020).

In this work, we propose back translation for molecule gener-
ation, that can effectively leverage unlabeled data for the molecule
generation. Assume that our main task is to learn a mapping [ to
convert a molecule from the source domain X’ to the target domain
Y. With our method, we need to additionally train a reversed
model g on the labeled training corpus, that can map a molecule
from Y to X.

The high-level idea of our work is shown as follows. Given any
molecule x € X, we can first generate a corresponding molecule in Y
by ¥ = f(x), and then use model g to convert y back to %, i.e.
x =g(¥). Ideally, x and X should be the same, but empirically, they
are different since both f and g are learned from data. Therefore, the
difference between x and % could be used as a training signal to
regularize the training. We propose an efficient algorithm for the
above strategy: given a collection unlabeled molecules in Y, we back
translate them using g and obtain the corresponding pseudo ‘source’
molecules in X. After that, we leverage both the labeled dataset and
the synthetic dataset to train the model f for our main task. Note
that model f and g can be any model architecture for the main task
and the reversed task. We verify our algorithm on four molecular
property improvement tasks and one retrosynthesis task. For mo-
lecular property improvement, we conduct experiments on the four
tasks proposed by Jin et al. (2020), which is to improve properties
of the input molecules while maintaining the similarities. We use
two types of models, Transformer (Zheng et al., 2020) and hierarch-
ical graph-to-graph translation (Jin et al., 2020) to verify the algo-
rithm and achieve state-of-the-art results on them. For
retrosynthesis, we conduct experiments on USPTO-50k datasets,
which is widely adopted in the literature. We implement our method
with the Transformer and GLN (Dai et al., 2019) backbones, and
obtain significant improvement over the corresponding baselines.
We release our data and code at github for reproducibility.

2 Methods

In this section, we introduce our proposed method and discuss the
relation with related methods.

2.1 Notations and problem setup
Let X and ) denote the source domain and target domain, respect-
ively, which are both collections of molecules. For molecular prop-
erty improvement, X and ) are molecules with relatively poor and
good properties; for retrosynthesis, X and ) are the sets of target
molecules and reactants, respectively. Our task is to learn a mapping
f : X—Y), that can generate the molecules in the target domain based
on the input from the source domain.

Denote the labeled data as £ C X x ). Denote the unlabeled
data from the target domains as U, C ).

2.2 Algorithm

As introduced in Section 1, we introduce a reversed model g, that
can achieve the mapping from Y to X. Denote the parameters of
model fand g as 8,and 6, respectively. Given an unlabeled molecule
yu € Uy, after mapping by g and f sequentially, we can obtain X, =
g(yu) and y,, = f(%,). Let P(%X,|y.;g) denote the probability that we
can obtain %, from v, by using model g, and let P(y,|%,;f) denote
the probability that we can recover y,, from x,, by f. The logarithmic
reconstruction probability can be written as
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X X

Considering that X is exponentially large, it is not practical to work
on Equation (1) directly. Alternatively, we can maximize the lower
bound of the reconstruction probability (Dempster et al., 1977).
Due to the concavity of log(- - -), Equation (1) can be further decom-
posed as

10g P(yu = yulyui &:f) o @)

2 2 s en PEulyus 8 1) 10 P(yu = Yul%u, yus & f)-
Considering %, is only related to vy, and g, we have
P(%u|yu; &, F) = P(%4|yu; ). When %, is given, reconstructing y, is

related to f only, thus P(y=9,|%.,v:8f) = P(yu = 9,|%u;f)-
Therefore, inequality (2) can be further written as

log P(yu = 9,lyus &) 2 2 z,ex P(Rulyus ) log P(yu = 3, |% 43 f)
= Es,p(ly.g) 08 P(Yu = V,|%us f)-

3)

We can use a Monte Carlo method to optimize Equation (3), which
consists of three steps:

1. We first train a model f and a model g on £ by

m1n Z — log P(ylx; 0y);

(xy)eL
4
mm Z — log P(x|y; 0,). @

Oc (xy)eLl

2. After obtaining 0, (i.e. g), for each y, € U,, we generate the cor-
responding %, using g and obtain

L = {(Ru,u,)|u, € Uy, %, is sampled from P([y,;0,)}.  (5)
3. We retrain the model f on £ U £, where the parameters are ini-
tialized from the 6 obtained in step (1). That is,

mm E

— log P(ylx; 0). 6)
b (x,y)eLuUl

We will eventually obtain the 607, which will be used for our
main task. The workflow is also 1{lustrated in Figure 1.

2.3 Discussion

1. We do not have specific requirement for the choice of f and g.
Any model that serves for the mapping XY and Y—X can be
leveraged in our algorithm, which makes it flexible.

2. There are some work about leveraging a reversed model to boost
the main task in natural language processing. Sennrich et al.
(2016) first proposed to use back translation to augment the data
and Edunov et al. (2018) implement this idea on a large scale of
the data. He et al. (2016) jointly train the f and g. Wang et al.
(2019) extend He et al. (2016) to a multiagent version, where mul-
tiple models for forward translation and back translation are
applied. The above works share similar insight with our method.
As a first step of applying unlabeled data for molecular generation,
we design a simple yet effective method and leave the extension to
more comprehensive versions as future work.

3 Results on molecular property improvement

In this section, we first verify our approach on the molecular prop-
erty improvement task.
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Fig. 1. The workflow of our proposed method

3.1 Setup

The molecular property improvement task [also known as molecule
optimization in Jin et al. (2019)] is about to improve specific proper-
ties of the input molecule. Following the setup of Jin et al. (2018,
2020), the input molecule x and output molecule y must satisfy the
similarity threshold sim(x,y) > 6 to prevent the model from generat-
ing arbitrary molecules, where sim is calculated by the Dice similar-
ity provided in RDKit (Landrum, 2016). By default, in this work,
we set 0 = 0.4. The task is to generate a ‘good’ target molecule y
with higher specific property from a ‘bad’ source molecule x under
this similarity constraint.

Dataset: We use the four datasets used in Jin et al. (2019, 2020),
which are about to improve the LogP, QED and DRD2 of the input
molecules. Specifically, (i) the penalized LogP score (Kusner et al.,
2017) measures the solubility and synthetic accessibility of a com-
pound. For LogP, we conduct two settings with different similarity
thresholds, 6 = 0.4 and 6 = 0.6; (ii) the qualitative estimation of
drug-likeness (briefly, QED), which is utilized to quantify the drug-
likeness of a compound. (iii) DRD2, which evaluates the biological
activity of a compound against the dopamine type 2 receptor
(DRD2). The bioactivity value is assessed by a property prediction
model from Olivecrona et al. (2017). All of these properties are
expected to get larger values. The statistics of the training, valid-
ation and test samples of the above four tasks are summarized in
Table 1.

We explore different amounts of unlabeled data, 250K and 1M,
that are randomly selected from ZINC. We work on two settings: (i)
we keep all the back translated data to enlarge the dataset; (ii) we
only keep the (%,,y,) pairs satisfying sim(%,,y,) > J, and the prop-
erty improvement is the same as that of the labeled training data.
For QED, the property of the input molecule lies in [0.7,0.8], and
that of the output molecule lies in [0.9, 1.0]. For DRD2, the property
of the input molecule is inactivate (P < 0.5) and that of output is ac-
tivate (P > 0.5).

Network architecture: We adopt a well-known sequence-to-se-
quence model, Transformer (Vaswani et al., 2017) and a graph-
based model HierG2G (Jin et al., 2020) as backbones of our
method. For Transformer, both the forward model f and backward
model g are Transformers with 6 layers, 4 attention heads, embed-
ding dimension 128 and feed-forward dimension 512. For
HierG2G, both f and g follow the settings in Jin ez al. (2020).

Evaluation metrics: In each task, given a source molecule x, we use
beam search and output top-k predictions {y1,y2,...,yx} and only
keep the translations that satisfy the similarity constraint. In this
work, k=20. For LogP tasks, we calculate the highest property
score improvement for each data, i.e. max;(logP(y;) — logP(x)), and
report the average property improvement over the test set. For other
two tasks, we report the success rate. Specifically, for QED, the task
is to translate molecules with QED scores in [0.7,0.8] into a higher
range [0.9,1.0]. For DRD2, the task is to optimize the biological ac-
tivity against DRD2 of a molecule, where we need to translate a
molecule from inactivate state (P < 0.5) to activate state (P > 0.5).
The similarity constraint is § > 0.4 for QED and DRD2.

We also report the diversity and novelty scores. Specifically,
given a molecule x, the diversity score is defined as the average pair-
wise molecular distances among those predictions, i.e.
ﬁ2i¢f 1 —sim(y;, y;), where sim(y;,y;) is the similarity over

@ EE,I:' 9 :> L= {Ru )}

(2) Back translate the unlabeled dataset using g

(3) Train a source — target model f on £ U £

Table 1. Statistics of the datasets of molecular property
improvement

Task #Training #Validation #Test
LogP (6 > 0.4) 98851 200 800
LogP (6 > 0.6) 74887 200 800
QED 87226 360 800
DRD2 34234 500 1000

Table 2. Results of molecular property improvement

Methods LogP0.6 LogP0.4 QED (%) DRD2 (%)
JT-VAE (Jin et al., 2018) 0.28 1.03 8.8 3.4
CG-VAE (Liu et al., 2018) 0.25 0.61 4.8 2.3
GCPN (You et al., 2018) 0.79 2.49 9.4 4.4
MMPA (Dalke et al.,2018)  1.65 3.29 32.9 46.4
seq2seq (Jin et al., 2020) 2.33 3.37 58.5 75.9
JTNN (Jin et al., 2019) 2.33 3.55 59.9 77.8
Transformer (Vaswani et al., 2017) backbone

Baseline 2.45 3.69 71.9 60.2
+BT(250K) 2.71 4.23 81.5 66.5
+BT(250K, filtered) 2.79 4.34 82.1 67.1
+BT(1M) 2.39 3.71 751 50.1
+BT(1M, filtered) 2.86 4.41 82.9 67.4
HierG2G (Jin et al., 2020) backbone

Backbone 2.49 3.98 76.9 85.9
+BT(250K) 2.67 4.19 79.0 86.9
+BT(250K, filtered) 2.75 4.24 79.1 87.3
+BT(1M) 2.48 4.00 76.4 84.6
+BT(1M, filtered) 2.77 4.21 79.4 87.2

Note: All of the best property values are marked in bold.

Morgan fingerprints (Rogers and Hahn, 2010) of two molecules.
Following Jin et al. (2019), the novelty score is defined as
1 —|¥ N S8]/|S], where S is the set of all molecules used in training,
and Y is the set of all generated molecules.

3.2 Results

The results are reported in Table 2, where baseline refers to the set-
ting without unlabeled data, and the numbers of unlabeled data are
in the brackets after ‘BT’. For the settings where the unlabeled data
are filtered, they are tagged by ‘filtered’.

We can see that back translation works for molecular property
improvement, no matter for Transformer backbone or HierG2G
backbone. Also, simply using more unlabeled data hurts the per-
formance. Taking the QED dataset with Transformer backbone as
an example, when using 1M unlabeled data, the performance is
worse than that of 250K. However, after applying data filtration,
the performance improves to 82.9%, outperforming the results with
250K unlabeled data only. This shows the importance of data filtra-
tion when using unlabeled data.
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Fig. 2. Comparison of generated molecules between HierG2G with and without our approach. Each row from top to bottom is examples selected from DRD2, QED, LogP
(sim> 0.4), LogP (sim> 0.6), respectively. All DRD2 scores in the first row are predicted by the trained model from Olivecrona et al. (2017)

In Table 2, we can see that our method outperforms previous
baselines like JTNN (Jin et al., 2019) and HierG2G, and achieved
state-of-the-art results on these tasks. We also provide some gener-
ated molecules in Figure 2.

Our method leverages a forward translation model f and a back
translation model g. We summarize the time of training f and g
(denoted as Ty), back translating the unlabeled molecules using g
(denoted as T}), and retraining the forward model (denoted as T}) in

Table 3. Indeed, our method takes 2.5x more time than convention-
al supervised method, but brings promising improvement. Note that
Ty < Ty because retraining the forward model on the synthetic
data is warm started from the previous forward model, and then it
does not require much training time to convergence. We will further
improve the efficiency in the future.

The diversity and novelty scores over QED and DRD2 datasets are
reported in Table 4. The results show that our method achieves higher
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Table 3. Statistics of the training time

Training time (h) To T, T
Transformer 8.5 0.9 1.6
HierG2G 16.8 1.1 2.8

Note: All training time is analyzed on DRD2 dataset along with 1M un-
labeled data.

Table 4. Comparison of diversity and novelty scores between previ-
ous methods and our method on QED and DRD2 datasets

Methods QED DRD2

Diversity Novelty (%) Diversity Novelty (%)

GCPN 0.216 100 0.152 100
MMPA 0.236 99.9 0.275 99.9
seq2seq 0.331 99.6 0.176 79.7
JTINN 0.373 98.3 0.156 83.4
Transformer backbone

Baseline 0.349 98.8 0.182 89.8
+BT(250K) 0.377 99.3 0.218 92.4
+BT(250K, filtered) 0.380 99.3 0.221 92.7
+BT(1M) 0.396 99.7 0.242 95.1
+BT(1M, filtered) 0.390 99.5 0.238 94.9
HierG2G backbone

Backbone 0.477 98.6 0.192 84.2
+BT(250K) 0.484 99.1 0.250 88.7
+BT(250K, filtered) 0.481 99.2 0.244 87.9
+BT(1M) 0.496 99.6 0.275 92.4
+BT(1M, filtered) 0.489 99.3 0.270 92.1

Note: For clarity, we have omitted some invalid previous results. Bold fonts
indicate the best results of each setting.

diversity and novelty scores for both backbone models. This is because
the large-scale unlabeled data enables the model to widely explore the
hidden representations of molecules and generate grand new molecules.
Our models still have less novelty than GCPN and MMPA; however,
these methods have much lower property improvement. The results of
LogP0.6 and LogP0.4 are left in Supplementary Appendix A.

4 Results on retrosynthesis prediction

We also verify our approach on the retrosynthesis prediction task. A
chemical reaction can be viewed as a transformation from a reactant
set R = {r1,72,...,rn} to the product x. In retrosynthesis predic-
tion, given the product x, the goal is to predict the reactant set R.

4.1 Setup

Dataset: Following Dai et al. (2019), Shi et al. (2020) and Yan et al.
(2020), we conduct experiments on the widely used benchmark
dataset, USPTO-50k, which has 50k reactions with 10 reaction
types in total. For fair comparison with previous work, we use the
data released by Dai ez al. (2019), where the training, validation and
test have been split in advance and each part contains 80%, 10%
and 10% of the total data respectively. (Data and code: https:/
github.com/Hanjun-Dai/GLN.) For experiments, we work on two
settings where the reaction type is given or not.

The unlabeled data are selected from ZINC (Sterling and
Irwin, 2015). Note that for retrosynthesis prediction, each source
molecule is made up of [ target molecules. In USPTO-50k,
l€{1,2,3}. Let N; denote the number of training samples
whose target side has | molecules. According to statistics,
Ni: N, : N3 =29.3%:70.4% : 0.3%. Therefore, to create a react-
ant set R in our unlabeled dataset ¢/,, we sample the number of
reactants | w.p. m, then sample / molecules from ZINC,

concatenate them as a large molecule and put it into /. The default
value of |U,| is 250k, and we also vary this number to verify the ef-
fect on the unlabeled data size.

Network architecture: We apply our approach to a sequence-based
model, Transformer (Vaswani et al., 2017) and a graph-based
model, GLN (Dai et al., 2019). For Transformer, we first tokenize
the SMILES strings using regular expression provided by Schwaller
et al. (2018) and then feed them into Transformers (tokenizer details
are reported in Supplementary Appendix C). Both the forward
model f and reverse model g are Transformers with four layers, 8 at-
tention heads, embedding dimension 256 and feed-forward dimen-
sion 2048. Therefore, we still use the Transformer as the reversed
model when working on GLN. To sample pseudo pairs, i.e.
Equation (5), we use random sampling to speed up the process.

Evaluation metrics: Following the common practice of retrosynthe-
sis prediction (Dai et al., 2019; Shi er al., 2020), we evaluate the
models by the top-k exact match accuracy (briefly, top-k accuracy),
which verifies that given a product, whether one of the k generated
reactant sets exactly matches the ground truth reactant set. The k
ranges from {1, 3,5,10,20,50}. For all k> 1, we use beam search
to generate the reactant sets, and rank them by log likelihoods.

4.2 Results
The top-k accuracy of baselines and our approach is reported in
Table 5, including both the reaction type is given or not. The A in
Table 5 denotes the gap between ‘ours +alg’ and alg, where alg can
be Transformer and GLN.

We have the following observations:

1. After combined with our method, the performance of both
Transformer and GLN can be improved, no matter the reaction
type is given or not. This demonstrates the effectiveness and gen-
eralization ability of our method.

2. Across different top-k accuracy metrics, our approach generally
brings the most improvement for smaller £’s like 1, 3 and 5, no
matter whether the reaction type is given or not. For example,
when we use the GLN model with reaction type known, the im-
provement decreases w.r.t. k. This shows that the usage of un-
labeled data helps improve the high-precision decisions.

3. Our proposed method outperforms existing baselines, including:
(i) expertSys (Liu et al., 2017), an expert system that automatic-
ally extract retrosynthetic reaction rules from the training set
and applies the rules to a target molecule to obtain the reactants;
(ii) the sequence-to-sequence models, whose encoders/decoders
are LSTM (Liu et al., 2017) and Transformer (Karpov et al.,
2019b); (iii) the template-based methods retrosim (Coley et al.,
2017) and neuralsym (Segler and Waller, 2017); (iv) the graph-
to-graph translation model (Shi et al., 2020), which leverages
graph neural network for translation. The success of our method
shows the effectiveness of using unlabeled data.

4.3 Analysis

Effect of unlabeled data: To verify the effect on the amount of un-
labeled data, we use all parallel data in USPTO-50k and use
{50k, 100k, 150k,250k, 500k} unlabeled data. We conduct experi-
ments on Transformer model and report the top-1 and top-10 accur-
acy. The results are in Figure 3. As the number of unlabeled data
increased from 50k to 250k, both the top-1 and top-10 accuracy
increases, which shows that leveraging unlabeled data can effectively
improve the performances. However, when the unlabeled data are
larger than 250k, the performance is not further improved. Our con-
jecture is that the noise in the unlabeled data hurts more than the
benefits brought by the unlabeled data.

Effect of labeled data: To verify the improvement of our method
w.r.t. amounts of labeled data, we conduct experiments on

Z20z 11udy gz uo Jasn euiy) Jo ABojouyos] pue 8ousIog 10 AlsIaAlun AQ Ly6YSH/rrZ L/S/8E /2 101E/SONBWIOLUIOIG/WOD dNoolWwapeoeR//:sdly Wol) papeojumoq


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab817#supplementary-data
https://github.com/Hanjun-Dai/GLN
https://github.com/Hanjun-Dai/GLN
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab817#supplementary-data

Back translation for molecule generation 1249
Table 5. Results of top-k exact match accuracy on USPTO-50K dataset
Methods Top-k accuracy (%)

1 3 5 10 20 50
Reaction class given as prior
expertSys (Liu et al., 2017) 35.4 52.3 591 65.1 68.6 69.5
seq2seq (Liu ez al., 2017) 37.4 52.4 57.0 61.7 65.9 70.7
retrosim (Coley et al., 2017) 52.9 73.8 81.2 88.1 91.8 92.9
neuralsym (Segler and Waller, 2017) 55.3 76.0 81.4 85.1 86.5 86.9
G2Gs 61.0 81.3 86.0 88.7 — —
Transformer (Vaswani et al., 2017) 52.2 68.2 72.7 77.4 80.1 82.3
Ours + Transformer 559 72.8 77.8 79.7 82.2 83.2
A 3.7 4.6 51 2.3 2.1 0.9
GLN (Dai et al., 2019) 64.2 79.1 85.2 90.0 92.3 93.2
Ours + GLN 67.9 82.5 87.3 91.5 92.9 93.6
A 3.7 3.4 2.1 1.5 0.6 0.4
Reaction class not known
retrosim (Coley et al., 2017) 37.3 54.7 63.3 74.1 82.0 85.3
neuralsym (Segler and Waller, 2017) 44.4 65.3 72.4 78.9 82.2 83.1
G2Gs (Shi et al., 2020) 48.9 67.6 72.5 75.5 — —
Transformer (Vaswani et al., 2017) 37.9 57.3 62.7 68.1 72.4 75.1
Ours + Transformer 43.5 58.8 64.6 69.7 73.6 75.8
A 5.6 1.5 1.9 1.6 1.2 0.7
GLN (Dai et al., 2019) 52.5 69.0 75.6 83.7 89.0 92.4
Ours + GLN 54.7 70.2 77.0 84.4 89.5 92.7
A 2.2 1.2 1.4 0.7 0.5 0.3

Bold fonts indicate the best results of each setting.
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Fig. 3. Top-1 and top-10 accuracy w.r.t. different unlabeled data sizes
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Fig. 4. Comparison of the top-10 accuracy between Transformer and the combin-
ation with our approach w.r.t. different amount of labeled data.

Transformer models with different settings, where there are L,
labeled samples L, € {5k, 10k,25k, 50k} and 250k unlabeled mole-
cules. The results are in Figure 4. When only 5k data are available,
leveraging monolingual data hurts the performance. This is because
the Transformer model itself is not well trained, therefore the syn-
thetic pseudo labels are not good enough to improve the performan-
ces. As the number of labeled data increased, we can see that
leveraging more unlabeled data becomes more and more helpful.
Our conjecture is that when the amount of labeled data is large
enough, leveraging unlabeled data will become less helpful. We will
verify it on larger datasets in the future.

Case study: We visualize the predicted results of GLN and our
method built on top of GLN in Figure 5. We show the top-3 mole-
cules and their Dice similarity (calculated by RDKit) to the ground
truth. We can see that the reactants generated by our method are
more close to the ground truth one, and our method generates the
only correct candidate.

4.4 Examples of back translated molecules

We visualize some back translated examples of unlabeled data on
molecular property improvement and retrosynthesis prediction in
Figure 6. In Figure 6a and b, we can see that the backward models
generate molecules %, whose property is not as good as y,, thus
(%u,Yu) can be used as additional training data for f. Similarly, in
Figure 6¢, the model can also generate synthetic data for retrosyn-
thesis. We also show more back translation examples in
Supplementary Appendix B.

5 Conclusions and future work

In this paper, we propose a new semisupervised method called
back translation for molecule generation, where a reversed model
is trained to back translate unlabeled data into the source domain,
and the translated synthetic data were combined with the labeled
data to enhance the model for the main task. Experiments on
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